International Journal of Health and Life Sciences

Published by: Kowsar

Phytoremediation with Festuca arundinacea: A Mini Review

Shima Khashij 1 , Bahareh Karimi 1 and Pouran Makhdoumi 2 , *
Authors Information
1 Environment and Energy Department, Islamic Azad University, Tehran, Iran
2 Student Research Committee, Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
Article information
  • International Journal of Health and Life Sciences: July 2018, 4 (2); e86625
  • Published Online: November 26, 2018
  • Article Type: Review Article
  • Received: November 21, 2018
  • Accepted: November 21, 2018
  • DOI: 10.5812/ijhls.86625

To Cite: Khashij S, Karimi B, Makhdoumi P. Phytoremediation with Festuca arundinacea: A Mini Review, Int J Health Life Sci. 2018 ; 4(2):e86625. doi: 10.5812/ijhls.86625.

Abstract
Copyright © 2018, International Journal of Health and Life Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Future Research
4. Conclusions
Footnotes
References
  • 1. Henry JR. An overview of the phytoremediation of lead and mercury. Washington, DC: National Network of Environmental Management Studies (NNEMS), Prepared for US Environmental Protection Agency; 2000.
  • 2. Naderi MR, Danesh-Shahraki A, Raiesi F. [Evaluation the efficiency of six sunflower cultivars in phytoextraction of lead from a Pb-bearing soil for long term]. J Soil Water. 2014;28(3):596-604. Persian.
  • 3. Shariat A, Assareh MH, Ghamari-Zare A. [Effects of cadmium on some physiological characteristics of Eucalyptus occidentalis]. J Sci Technol Agricult Natur Resource. 2010;14(53 (B)):145-54. Persian.
  • 4. Nascimento CWA, Xing B. [Phytoextraction: A review on enhanced metal availability and plant accumulation]. Scientia Agricola. 2006;63(3):299-311. Portuguese. doi: 10.1590/s0103-90162006000300014.
  • 5. Mauskar JM. Cadmium–An environment toxicant. Delhi, India: Central Pollution Control Board (Ministry of Environment & Forests, Govt of India), Parivesh Bhawan, East Arjun Nagar; 2007.
  • 6. Roomiani L, Hakimi Mofrad R, Jalili S. [The phytoremediation study of aquatic plants of Dez river (Potamogeton crispus, Polygonum hydropiper, Ceratophyllum demersum and Phragmites australis), for the bioaccumulation of cadmium, lead, zinc and copper heavy metals]. Wetland Ecobiol. 2015;7(23):29-35. Persian.
  • 7. Moghimi J. [Introduction of some important species suitable for development and improvement of Iranian rangelands]. Tehran: Aron; 2005. Persian.
  • 8. Balasubramaniyam A, Chapman MM, Harvey PJ. Responses of tall fescue (Festuca arundinacea) to growth in naphthalene-contaminated sand: Xenobiotic stress versus water stress. Environ Sci Pollut Res Int. 2015;22(10):7495-507. doi: 10.1007/s11356-015-4084-8. [PubMed: 25874421].
  • 9. Albornoz CB, Larsen K, Landa R, Quiroga MA, Najle R, Marcovecchio J. Lead and zinc determinations in Festuca arundinacea and Cynodon dactylon collected from contaminated soils in Tandil (Buenos Aires Province, Argentina). Environ Earth Sci. 2016;75(9):742. doi: 10.1007/s12665-016-5513-9.
  • 10. Chen YC, Banks MK, Schwab AP. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environ Sci Technol. 2003;37(24):5778-82. doi: 10.1021/es030400x. [PubMed: 14717195].
  • 11. Lou Y, Zhao P, Wang D, Amombo E, Sun X, Wang H, et al. Germination, physiological responses and gene expression of tall Fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. PLoS One. 2017;12(1). e0169495. doi: 10.1371/journal.pone.0169495. [PubMed: 28046098]. [PubMed Central: PMC5207687].
  • 12. Homaei M, Ghafarian Mogharab MH. [Investigation of the relationship between different forms of lead in soil with radish absorption (Rhaphanus sativa)]. The 10th Iranian Soil Science Congress. Karaj. 2007. p. 1535-4. Persian.
  • 13. Cao A, Cappai G, Carucci A, Muntoni A. Selection of plants for zinc and lead phytoremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2004;39(4):1011-24. doi: 10.1081/ESE-120028410. [PubMed: 15137716].
  • 14. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere. 2010;81(9):1084-90. doi: 10.1016/j.chemosphere.2010.09.034. [PubMed: 20961596].
  • 15. Begonia MT, Begonia GB, Ighoavodha M, Gilliard D. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Int J Environ Res Public Health. 2005;2(2):228-33. doi: 10.3390/ijerph2005020005. [PubMed: 16705822]. [PubMed Central: PMC3810625].
  • 16. Zhu D, Schwab AP, Banks MK. Heavy metal leaching from mine tailings as affected by plants. J Environ Qual. 1999;28(6):1727-32. doi: 10.2134/jeq1999.00472425002800060006x.
  • 17. Feierhan H, Li-ying P, Yong C, Nazila Z, Tao W. Impact of Pb in automobile tail gas on soil pollution. Arid Environ Monitor. 2002;3:10.
  • 18. Li DM, Zhang XJ, Li GH, Deng DF, Zou H. Effects of heavy metal ions on germination and physiological activity of festuca arundinacea seed. Pratacult Sci. 2008;6:27.
  • 19. Taylor RW, Ibeabuchi IO, Sistani KR, Shuford JW. Heavy metal concentration in forage grasses and extractability from some acid mine spoils. Water Air Soil Pollut. 1993;68(3-4):363-72. doi: 10.1007/BF00478463.
  • 20. Zhao S, Jia L, Duo L. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching. Bioresour Technol. 2013;129:249-55. doi: 10.1016/j.biortech.2012.11.075. [PubMed: 23247507].
  • 21. Hetrick BA, Wilson GW, Figge DA. The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut. 1994;86(2):171-9. doi: 10.1016/0269-7491(94)90188-0. [PubMed: 15091634].
  • 22. Shetty KG, Hetrick BA, Figge DA, Schwab AP. Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut. 1994;86(2):181-8. doi: 10.1016/0269-7491(94)90189-9. [PubMed: 15091635].
  • 23. Batty LC, Anslow M. Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). Int J Phytoremediation. 2008;10(3):234-49. doi: 10.1080/15226510801997549. [PubMed: 18710098].
  • 24. Sun M, Fu D, Teng Y, Shen Y, Luo Y, Li Z, et al. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soil Sediment. 2011;11(6):980-9. doi: 10.1007/s11368-011-0382-z.
  • 25. Buono DD, Pannacci E, Bartucca ML, Nasini L, Proietti P, Tei F. Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. Int J Phytoremediation. 2016;18(9):885-91. doi: 10.1080/15226514.2016.1156633. [PubMed: 26934386].
  • 26. Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. 2005;56:15-39. doi: 10.1146/annurev.arplant.56.032604.144214. [PubMed: 15862088].
  • 27. Huang JW, Chen J, Berti WR, Cunningham SD. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol. 1997;31(3):800-5. doi: 10.1021/es9604828.
  • 28. Cunningham SD, Ow DW. Promises and prospects of phytoremediation. Plant Physiol. 1996;110(3):715-9. doi: 10.1104/pp.110.3.715. [PubMed: 12226213]. [PubMed Central: PMC157769].
  • 29. Reilley KA, Banks MK, Schwab AP. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual. 1996;25(2):212-9. doi: 10.2134/jeq1996.252212x.
  • 30. Ho CH, Applegate B, Banks MK. Impact of microbial/plant interactions on the transformation of polycyclic aromatic hydrocarbons in rhizosphere of Festuca arundinacea. Int J Phytoremediation. 2007;9(2):107-14. doi: 10.1080/15226510701232765. [PubMed: 18246719].
  • 31. Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, et al. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater. 2009;166(2-3):1226-31. doi: 10.1016/j.jhazmat.2008.12.027. [PubMed: 19150175].
  • 32. Kuiper I, Bloemberg GV, Lugtenberg BJ. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact. 2001;14(10):1197-205. doi: 10.1094/MPMI.2001.14.10.1197. [PubMed: 11605959].
  • 33. Etim EE. Phytoremediation and its mechanisms: A review. Int J Environ Bioenergy. 2012;2(3):120-36.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments